Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.137
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
PeerJ ; 12: e17177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38563005

RESUMO

Background: Plants have been pivotal in traditional and modern medicine globally, with historical evidence supporting their therapeutic applications. Nigella (Nigella sativa L.) is an annual herbaceous plant of the Ranunculaceae family and is cultivated in the Middle East, Eastern Europe, and Western and Central Asia. The medicinal use of plants dates back thousands of years, documented in ancient writings from various civilizations. Alkaloids, phenolics, saponins, flavonoids, terpenoids, anthraquinones, and tannins found in plants exhibit antioxidant, immunomodulatory, anti-inflammatory, anticancer, antibacterial, and antidiabetic activities. Methodology: This study specifically examines the pharmacological potential of Nigella sativa L., emphasizing thymoquinone-a compound with diverse nutraceutical benefits. The extraction, characterization, and quantification of thymoquinone, alongside other physicochemical parameters, were carried out using ethanol through Soxhlet extraction procedures on five nigella varieties. HPLC analysis was performed to determine the maximum accumulation of thymoquinone in the released variety of the plant and the chemical composition of the seed oil isolated from Nigella sativa L., varieties utilized in the study was determined through GC-MS analysis. Results: The research revealed that the Ajmer nigella-20 variety stands out, exhibiting elevated levels of thymoquinone (0.20 ± 0.07%), antioxidants (76.18 ± 1.78%), and substantial quantities of total phenols (31.85 ± 0.97 mg GAEg-1 seed) and flavonoids (8.150 ± 0.360 mg QE 100 g-1 seed) compared to other varieties. The GC-MS profiling showed the presence of 11 major compounds in the studied varieties, with p-cymene, longifolene, and myristic acid identified as the major chemical compounds present in the oil. Conclusion: The observed variations among Nigella varieties indicate the Ajmer nigella-20 variety as particularly promising for thymoquinone and bioactive compound extraction. This study underscores Nigella's potential as a source of pharmacologically active compounds, highlighting the need for further exploration in therapeutic applications.


Assuntos
Benzoquinonas , Nigella sativa , Nigella , Nigella sativa/química , Extratos Vegetais/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Flavonoides
2.
Se Pu ; 42(4): 368-379, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38566426

RESUMO

Pesticide residues may be present in olive oil because pesticides are applied to olive trees during their cultivation and growth for pest prevention and some of these pesticides are not easily degraded. Studies on pesticide residues in olive oil have mainly focused on the detection of single types of pesticide residues, and reports on the simultaneous detection of multiple pesticide residues are limited. At present, hundreds of pesticides with different polarities and chemical properties are used in practice. In this study, an analytical method based on fully automatic QuEChERS pretreatment instrument coupled with gas chromatography-quadrupole time-of-flight mass spectrometry (GC-QTOF-MS) was established for the rapid determination of 222 pesticide residues in olive oil. The effects of acetonitrile acidification concentration, n-hexane volume, oscillation time, centrifugation temperature, and purification agent on the determination of the 222 pesticide residues were investigated. First, ions with good responses and no obvious interference were selected for quantification and characterization. The purification process was then developed by setting the parameters of the fully automatic QuEChERS pretreatment instrument to optimal values. The sample was extracted with acetonitrile containing 2% formic acid, and the supernatant was purified by centrifugation in a centrifuge tube containing 400 mg N-propylethylenediamine (PSA), 400 mg octadecylsilane-bonded silica gel (C18), and 1200 mg anhydrous magnesium sulfate. The purified solution was blown dry with nitrogen and then fixed with ethyl acetate for instrumental analysis. Finally, a matrix standard solution was used for quantification. The method was validated in terms of matrix effects, linear ranges, limits of detection (LODs) and quantification (LOQs), accuracies, and precisions. The results showed that 86.04% of the 222 pesticides had linear ranges of 0.02-2.00 µg/mL, 10.81% had linear ranges of 0.10-2.00 µg/mL, and 3.15% had linear ranges of 0.20-2.00 µg/mL. The pesticide residues showed good relationships within their respective linear ranges, and the correlation coefficients (R2) were greater than 0.99. The LODs of all tested pesticides ranged from 0.002 to 0.050 mg/kg, and their LOQs ranged from 0.007 to 0.167 mg/kg. Among the 222 pesticides determined, 170 pesticides had LOQs of 0.007 mg/kg while 21 pesticides had LOQs of 0.017 mg/kg. At the three spiked levels of 0.2, 0.5, and 0.8 mg/kg, 79.58% of all tested pesticides had average recoveries of 70%-120% while 65.92% had average recoveries of 80%-110%. In addition, 93.54% of all tested pesticides had relative standard deviations (RSDs, n=6)<10% while 98.35% had RSDs (n=6)<20%. The method was applied to 14 commercially available olive oil samples, and seven pesticides were detected in the range of 0.0044-0.0490 mg/kg. The residues of fenbuconazole, chlorpyrifos, and methoprene did not exceed the maximum limits stated in GB 2763-2021. The maximum residual limits of molinate, monolinuron, benalaxyl, and thiobencarb have not been established. The method utilizes the high mass resolution capability of TOF-MS, which can improve the detection throughput while ensuring good sensitivity. In addition, high-resolution and accurate mass measurements render the screening results more reliable, which is necessary for the high-throughput detection of pesticide residues. The use of a fully automatic QuEChERS instrument in the pretreatment step reduces personnel errors and labor costs, especially when a large number of samples must be processed, thereby offering significant advantages over other approaches. Moreover, the method is simple, rapid, sensitive, highly automatable, accurate, and precise. Thus, it meets requirements for the high-throughput detection of pesticide residues in olive oil and provides a reference for the development of detection methods for pesticide residues in other types of oils as well as the automatic pretreatment of complex matrices.


Assuntos
Resíduos de Praguicidas , Praguicidas , Resíduos de Praguicidas/análise , Azeite de Oliva , Espectrometria de Massas em Tandem/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Praguicidas/análise , Acetonitrilas/análise
3.
Se Pu ; 42(4): 387-392, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38566428

RESUMO

The residual amount of halogenated solvents in olive oil is an important indicator of its quality. The National Olive Oil Quality Standard GB/T 23347-2021 states that the residual amount of individual halogenated solvents in olive oil should be ≤0.1 mg/kg and that the total residual amount of halogenated solvents should be ≤0.2 mg/kg. COI/T.20/Doc. No. 8-1990, which was published by the International Olive Council, describes the standard method used for the determination of halogenated solvents in olive oil. Unfortunately, this method is cumbersome, has poor repeatability and low automation, and is unsuitable for the detection and analysis of residual halogenated solvents in large quantities of olive oil. At present, no national standard method for determining residual halogenated solvents in olive oil is available in China. Thus, developing simple, efficient, accurate, and stable methods for the determination of residual halogenated solvents in olive oil is imperative. In this paper, a method based on automatic headspace gas chromatography was established for the determination of residual halogenated solvents, namely, chloroform, carbon tetrachloride, 1,1,1-trichloroethane, dibromochloromethane, tetrachloroethylene, and bromoform, in olive oil. The samples were processed as follows. After mixing, 2.00 g (accurate to 0.01 g) of the olive oil sample was added into a 20 mL headspace injection bottle and immediately sealed for headspace gas chromatography analysis. Blank virgin olive oil was used to prepare a standard working solution and the external standard method for quantification. The solvents used in the preparation of halogenated solvent standard intermediates were investigated and methanol was selected as a replacement for N,N-dimethylacetamide to prepare a halogenated solvent standard intermediate owing to its safety. The effects of different injection times (1, 2, 3, 4, 5, 6 s), equilibration temperatures (60, 70, 80, 90, 100, 110, 120 ℃), and equilibration times (4, 5, 8, 10, 20, 30, 40 min) of the headspace sampler on the detection of the residual amounts of the six halogenated solvents were investigated. The optimal injection time and equilibration temperature were 3 s and 90 ℃, respectively. The method demonstrated good analytical performance for the six halogenated solvents when the equilibration time was 30 min. A methodological study was conducted on the optimized method, and the results showed that the six halogenated solvents exhibited good linear relationships in the range of 0.002-0.200 mg/kg, with correlation coefficients of ≥0.9991. The limits of detection (LODs) and quantification (LOQs) of 1,1,1-trichloroethane and bromoform were 0.0006 and 0.002 mg/kg, respectively. The LODs and LOQs of chloroform, carbon tetrachloride, dibromochloromethane, and tetrachloroethylene were 0.0003 and 0.001 mg/kg, respectively. The average recoveries under different spiked levels were 85.53%-115.93%, and the relative standard deviations (n=6) were 1.11%-8.48%. The established method was used to analyze 13 olive oil samples available in the market. Although no halogenated solvents were detected in these samples, a limited number of samples does not represent all olive oils. Hence, monitoring residual halogenated solvents in olive oil remains necessary for its safe consumption. The LOQs of the method for the six halogenated solvents were significantly lower than that of the COI/T.20/Doc. No. 8-1990 standard method (0.02 mg/kg). In addition, the developed method can be conducted under short operation times with high precision and degree of automation as well as good accuracy. Thus, the proposed method is suitable for the determination and analysis of the residues of the six halogenated solvents in large batches of olive oil samples.


Assuntos
Tetracloroetileno , Tricloroetanos , Azeite de Oliva , Solventes/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Tetracloroetileno/análise , Clorofórmio/análise , Tetracloreto de Carbono/análise , Cromatografia Gasosa/métodos , Trialometanos
4.
Wei Sheng Yan Jiu ; 53(2): 316-331, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38604970

RESUMO

OBJECTIVE: To establishe an analysis and identification method for 2-methylisoborneol(2-MIB) and geosmin(GSM) in water using purge and trap-gas chromatography-mass spectrometry. METHODS: The samples were enriched and analyzed using a purge and trap system, followed by the separation on a DB-624(30 m×0.25 mm, 1.4 µm) chromatographic column. Quantification was performed using gas chromatography-mass spectrometry with the selected ion monitoring and internal standard calibration. RESULTS: The calibration curves for 2-MIB and GSM showed an excellent linearity in the range of 1 to 100 ng/L with R~2 values greater than 0.999. The detection limit and quantification limit for both 2-MIB and GSM were 0.33 ng/L and 1.0 ng/L, respectively. Spike recovery experiments were further carried on the source water and drinking water at three concentration levels. It showed that the average recoveries were from 82.0% to 111.0% for 2-MIB while 84.0% to 110% for GSM. Additionally, the test precision of 2-MIB and GSM ranged from 1.9% to 7.3% and 1.9% to 5.0%(n=6), respectively. The analysis of multiple samples including the local source water, treated water and distribution network water confirmed the existence of 2-MIB and GSM. CONCLUSION: Compared to the national standard(GB/T 5750.8-2023), the proposed method enables fully automated sample introduction and analysis without the extra pre-treatment. It provides the advantages of simplicity, good repeatability and high accuracy.


Assuntos
Água Potável , Naftóis , Poluentes Químicos da Água , Água/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Água Potável/análise , Canfanos/análise , Poluentes Químicos da Água/análise , Odorantes/análise
5.
Environ Monit Assess ; 196(5): 454, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622372

RESUMO

This work presents a sensitive and accurate analytical method for the determination of phenytoin at trace levels in domestic wastewater and synthetic urine samples by gas chromatography-mass spectrometry (GC-MS) after the metal sieve-linked double syringe liquid-phase microextraction (MSLDS-LPME) method. A metal sieve was produced in our laboratory in order to disperse water-immiscible extraction solvents into aqueous media. Univariate optimization studies for the selection of proper extraction solvent, extraction solvent volume, mixing cycle, and initial sample volume were carried out. Under the optimum MSLDS-LPME conditions, mass-based dynamic range, limit of quantitation (LOQ), limit of detection (LOD), and percent relative standard deviation (%RSD) for the lowest concentration in calibration plot were figured out to be 100.5-10964.2 µg kg-1, 150.6 µg kg-1, 45.2 µg kg-1, and 9.4%, respectively. Detection power was improved as 187.7-folds by the developed MSLDS-LPME-GC-MS system while enhancement in calibration sensitivity was recorded as 188.0-folds. In the final step of this study, the accuracy and applicability of the proposed system were tested by matrix matching calibration strategy. Percent recovery results for domestic wastewater and synthetic urine samples were calculated as 95.6-110.3% and 91.7-106.6%, respectively. These results proved the accuracy and applicability of the proposed preconcentration method, and the obtained analytical results showed the efficiency of the lab-made metal sieve apparatus.


Assuntos
Microextração em Fase Líquida , Poluentes Químicos da Água , Cromatografia Gasosa-Espectrometria de Massas/métodos , Águas Residuárias , Fenitoína/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Solventes/química , Água/análise , Microextração em Fase Líquida/métodos , Limite de Detecção
6.
Molecules ; 29(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611799

RESUMO

Wall paintings are integral to cultural heritage and offer rich insights into historical and religious beliefs. There exist various wall painting techniques that pose challenges in binder and pigment identification, especially in the case of egg/oil-based binders. GC-MS identification of lipidic binders relies routinely on parameters like the ratios of fatty acids within the plaster. However, the reliability of these ratios for binder identification is severely limited, as demonstrated in this manuscript. Therefore, a more reliable tool for effective differentiation between egg and oil binders based on a combination of diagnostic values, specific markers (cholesterol oxidation products), and PCA is presented in this study. Reference samples of wall paintings with egg and linseed oil binders with six different pigments were subjected to modern artificial ageing methods and subsequently analysed using two GC-MS instruments. A statistically significant difference (at a 95% confidence level) between the egg and oil binders and between the results from two GC-MS instruments was observed. These discrepancies between the results from the two GC-MS instruments are likely attributed to the heterogeneity of the samples with egg and oil binders. This study highlights the complexities in identifying wall painting binders and the need for innovative and revised analytical methods in conservation efforts.


Assuntos
Ácidos Graxos , Análise de Componente Principal , Cromatografia Gasosa-Espectrometria de Massas , Reprodutibilidade dos Testes
7.
Molecules ; 29(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38611949

RESUMO

Olibanum is a resinous traditional Chinese medicine that is directly used as a powder. It is widely used in China and is often combined with other traditional Chinese medicine powders to promote blood circulation and relieve pain, as well as to treat rheumatism, rheumatoid arthritis, and osteoarthritis. Powdered traditional Chinese medicine is often easily contaminated by microorganisms and 60Co irradiation is one of the good sterilization methods. Volatile organic compounds (VOCs) are the main active ingredient of olibanum. The aim of this study was to validate the optimum doses of 60Co irradiation and its effect on VOCs. 60Co irradiation was applied in different doses of 0 kGy, 1.5 kGy, 3.0 kGy, and 6.0 kGy. Changes in VOCs were detected using gas chromatography ion mobility spectrometry. A total of 81 VOCs were identified. The odor fingerprint results showed that, with an increase in irradiation dose, most of the VOCs of olibanum changed. Through principal component analysis, cluster analysis, and partial least squares discriminant analysis, it was demonstrated that, at 1.5 kGy, the impact of radiation on the VOCs of olibanum was minimal, indicating this is a relatively good irradiation dose. This study provides a theoretical basis for the irradiation processing and quality control of resinous medicinal materials such as olibanum and it also provides a good reference for irradiation technology development and its application to functional foods, thus making it both significant from a research perspective and useful from an application perspective.


Assuntos
Radioisótopos de Cobalto , Franquincenso , Compostos Orgânicos Voláteis , Espectrometria de Mobilidade Iônica , Cromatografia Gasosa-Espectrometria de Massas , Resinas Vegetais
8.
Methods Mol Biol ; 2788: 39-48, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656507

RESUMO

Plant volatile organic compounds (VOCs) are organic chemicals that plants release as part of their natural biological processes. Various plant tissues produce VOCs, including leaves, stems, flowers, and roots. VOCs are essential in plant communication, defense against pests and pathogens, aroma and flavor, and attracting pollinators. The study of plant volatiles has become an increasingly important area of research in recent years, as scientists have recognized these compounds' important roles in plant physiology. As a result, there has been a growing interest in developing methods for collecting and analyzing plant VOCs. HS-SPME-GC-MS (headspace solid-phase microextraction-gas chromatography-mass spectrometry) is commonly used for plant volatile analysis due to its high sensitivity and selectivity. This chapter describes an efficient method for extracting and identifying volatile compounds by HS-SPME coupled with GC-MS in tomato fruits.


Assuntos
Frutas , Cromatografia Gasosa-Espectrometria de Massas , Solanum lycopersicum , Microextração em Fase Sólida , Compostos Orgânicos Voláteis , Solanum lycopersicum/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/isolamento & purificação , Microextração em Fase Sólida/métodos , Frutas/química
9.
Methods Mol Biol ; 2788: 19-37, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656506

RESUMO

Metabolites are intermediate products formed during metabolism. Metabolites play different roles, including providing energy, supporting structure, transmitting signals, catalyzing reactions, enhancing defense, and interacting with other species. Plant metabolomics research aims to detect precisely all metabolites found within tissues of plants through GC-MS. This chapter primarily focuses on extracting metabolites using chemicals such as methanol, chloroform, ribitol, MSTFA, and TMCS. The metabolic analysis method is frequently used according to the specific kind of sample or matrix being investigated and the analysis objective. Chromatography (LC, GC, and CE) with mass spectrometry and NMR spectroscopy is used in modern metabolomics to analyze metabolites from plant samples. The most frequently used method for metabolites analysis is the GC-MS. It is a powerful technique that combines gas chromatography's separation capabilities with mass spectrometry, offering detailed information, including structural identification of each metabolite. This chapter contains an easy-to-follow guide to extract plant-based metabolites. The current protocol provides all the information needed for extracting metabolites from a plant, precautions, and troubleshooting.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Metabolômica , Plantas , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica/métodos , Plantas/metabolismo , Plantas/química , Metaboloma , Extratos Vegetais/química , Extratos Vegetais/análise
10.
Sci Rep ; 14(1): 9421, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658602

RESUMO

This study aimed to optimize pyrolysis conditions to maximize bio-oil yield from cattle dung, a waste product of livestock practices. Pyrolysis of cattle dung was carried out in batch type reactor. The pyrolysis process was optimized using a central composite design in response surface methodology, with conversion parameters such as pyrolysis temperature, vapor cooling temperature, residence time, and gas flow rate taken into account. The cattle dung bio-oil was analyzed using gas chromatography/mass spectroscopy (GC/MS), an elemental analyzer, a pH probe, and a bomb calorimeter. Furthermore, the ASTM standard procedures were used to determine the bio-fuel characteristics. The optimized conditions were found to be a pyrolysis temperature of 402 °C, a vapor cooling temperature of 2.25 °C, a residence time of 30.72 min, and a gas flow rate of 1.81 l min-1, resulting in a maximum bio-oil yield of 18.9%. According to the findings, the yield of bio-oil was predominantly affected by pyrolysis temperature and vapor cooling temperature. Moreover, the bio-oil that was retrieved was discovered to be similar to conventional liquid fuels in numerous ways.


Assuntos
Biocombustíveis , Pirólise , Animais , Bovinos , Biocombustíveis/análise , Cromatografia Gasosa-Espectrometria de Massas , Esterco/análise , Temperatura , Temperatura Alta , Fezes/química
11.
Sci Rep ; 14(1): 9195, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649707

RESUMO

The development of novel antioxidant compounds with high efficacy and low toxicity is of utmost importance in the medicine and food industries. Moreover, with increasing concerns about the safety of synthetic components, scientists are beginning to search for natural sources of antioxidants, especially essential oils (EOs). The combination of EOs may produce a higher scavenging profile than a single oil due to better chemical diversity in the mixture. Therefore, this exploratory study aims to assess the antioxidant activity of three EOs extracted from Cymbopogon flexuosus, Carum carvi, and Acorus calamus in individual and combined forms using the augmented-simplex design methodology. The in vitro antioxidant assays were performed using DPPH and ABTS radical scavenging approaches. The results of the Chromatography Gas-Mass spectrometry (CG-MS) characterization showed that citral (29.62%) and niral (27.32%) are the main components for C. flexuosus, while D-carvone (62.09%) and D-limonene (29.58%) are the most dominant substances in C. carvi. By contrast, ß-asarone (69.11%) was identified as the principal component of A. calamus (30.2%). The individual EO exhibits variable scavenging activities against ABTS and DPPH radicals. These effects were enhanced through the mixture of the three EOs. The optimal antioxidant formulation consisted of 20% C. flexuosus, 53% C. carvi, and 27% A. calamus for DPPHIC50. Whereas 17% C. flexuosus, 43% C. carvi, and 40% A. calamus is the best combination leading to the highest scavenging activity against ABTS radical. These findings suggest a new research avenue for EOs combinations to be developed as novel natural formulations useful in food and biopharmaceutical products.


Assuntos
Acorus , Antioxidantes , Carum , Cymbopogon , Óleos Voláteis , Extratos Vegetais , Cymbopogon/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Acorus/química , Carum/química , Cromatografia Gasosa-Espectrometria de Massas , Compostos de Bifenilo/antagonistas & inibidores , Compostos de Bifenilo/química , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia
12.
Anal Chim Acta ; 1304: 342555, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38637039

RESUMO

BACKGROUND: Omics is used as an analytical tool to investigate wine authenticity issues. Aging authentication ensures that the wine has undergone the necessary maturation and developed its desired organoleptic characteristics. Considering that aged wines constitute valuable commodities, the development of advanced omics techniques that guarantee aging authenticity and prevent fraud is essential. RESULTS: Α solid phase microextraction Arrow method combined with comprehensive two-dimensional gas chromatography-mass spectrometry was developed to identify volatiles in red wines and investigate how aging affects their volatile fingerprint. The method was optimized by examining the critical parameters that affect the solid phase microextraction Arrow extraction (stirring rate, extraction time) process. Under optimized conditions, extraction took place within 45 min under stirring at 1000 rpm. In all, 24 monovarietal red wine samples belonging to the Xinomavro variety from Naoussa (Imathia regional unit of Macedonia, Greece) produced during four different vintage years (1998, 2005, 2008 and 2015) were analyzed. Overall, 237 volatile compounds were tentatively identified and were treated with chemometric tools. Four major groups, one for each vintage year were revealed using the Hierarchical Clustering Analysis. The first two Principal Components of Principal Component Analysis explained 86.1% of the total variance, showing appropriate grouping of the wine samples produced in the same crop year. A two-way orthogonal partial least square - discriminant analysis model was developed and successfully classified all the samples to the proper class according to the vintage age, establishing 17 volatile markers as the most important features responsible for the classification, with an explained total variance of 88.5%. The developed prediction model was validated and the analyzed samples were classified with 100% accuracy according to the vintage age, based on their volatile fingerprint. SIGNIFICANCE: The developed methodology in combination with chemometric techniques allows to trace back and confirm the vintage year, and is proposed as a novel authenticity tool which opens completely new and hitherto unexplored possibilities for wine authenticity testing and confirmation.


Assuntos
Compostos Orgânicos Voláteis , Vinho , Vinho/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Microextração em Fase Sólida/métodos , Quimiometria , Análise por Conglomerados , Compostos Orgânicos Voláteis/análise
13.
Food Res Int ; 185: 114277, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38658069

RESUMO

For some food applications, it is desirable to control the flavor release profiles of volatile flavor compounds. In this study, the effects of crosslinking method and protein composition on the flavor release properties of emulsion-filled protein hydrogels were explored, using peppermint essential oil as a model volatile compound. Emulsion-filled protein gels with different properties were prepared using different crosslinking methods and gelatin concentrations. Flavor release from the emulsion gels was then monitored using an electronic nose, gas chromatography-mass spectrometry (GC-MS), and sensory evaluation. Enzyme-crosslinked gels had greater hardness and storage modulus than heat-crosslinked ones. The hardness and storage modulus of the gels increased with increasing gelatin concentration. For similar gel compositions, flavor release and sensory perception were faster from the heat-crosslinked gels than the enzyme-crosslinked ones. For the same crosslinking method, flavor release and perception decreased with increasing gelatin concentration, which was attributed to retardation of flavor diffusion through the hydrogel matrix. Overall, this study shows that the release of hydrophobic aromatic substances can be modulated by controlling the composition and crosslinking of protein hydrogels, which may be useful for certain food applications.


Assuntos
Emulsões , Aromatizantes , Cromatografia Gasosa-Espectrometria de Massas , Mentha piperita , Óleos de Plantas , Mentha piperita/química , Emulsões/química , Humanos , Óleos de Plantas/química , Aromatizantes/química , Gelatina/química , Reagentes de Ligações Cruzadas/química , Paladar , Hidrogéis/química , Nariz Eletrônico , Masculino , Feminino , Adulto
14.
Rapid Commun Mass Spectrom ; 38(10): e9736, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38533576

RESUMO

RATIONALE: Pesticide isomers are widely available in agricultural production and may vary widely in biological activity, potency, and toxicity. Chromatographic and mass spectrometric analysis of pesticide isomers is challenging due to structural similarities. METHODS: Based on liquid chromatography time-of-flight mass spectrometry, identification of cis-trans isomeric pesticides was achieved through retention time, characteristic fragment ions, and relative abundance ratio. Furthermore, theoretical and basic research has been conducted on the differences in characteristic fragment ions and their relative abundance ratios of cis-trans isomers. On the one hand, the cleavage pathways of six cis-trans isomers were elucidated through collision-induced dissociation to explain different fragment ions of the isomers. On the other hand, for those with the same fragment ions but different abundance ratios, energy-resolved mass spectrometry combined with computational chemical density functional theory in terms of kinetics, thermodynamics, and bond lengths was employed to explain the reasons for the differences in characteristic fragment ions and their abundance ratios. RESULTS: A high-resolution mass spectrometry method was developed for the separation and analysis of cis-trans isomers of pesticides in traditional Chinese medicine Radix Codonopsis, and six pesticide isomers were distinguished by retention time, product ions, and relative abundance ratios. The limits of quantification of the six pesticides were up to 10 µg/kg, and the linear ranges of them were 10-200 µg/kg, with coefficients of determination (R2) > 0.99, which demonstrated the good linearity of the six pesticides. The recoveries of the pesticides at spiked concentrations of 10, 20, and 100 µg/kg reached 70-120% with relative standard deviations ≤20%. CONCLUSIONS: It was demonstrated that the application of the method was well suited for accurate qualitative and quantitative analysis for isomers with different structures, which could avoid false-negative results caused by ignoring other isomers effectively.


Assuntos
Resíduos de Praguicidas , Praguicidas , Praguicidas/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas em Tandem/métodos , Isomerismo , Íons/análise , Resíduos de Praguicidas/análise
15.
J Agric Food Chem ; 72(12): 6735-6743, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38533988

RESUMO

A requisite to improving the taste and odor attributes of farmed fish is the availability of accurate and practical analytical methods to quantify 2-methylisoborneol (MIB) and geosmin (GSM). Solid-phase microextraction (SPME) enables reliable measurement of nanogram per liter quantities of MIB and GSM in water. In contrast, direct headspace (HS)-SPME of biological matrices with variable proximate compositions can increase bias and uncertainty in off-flavor determinations. Analytical recovery plays a crucial role in the accurate determination of MIB and GSM in fish, and this study investigates strategies to maximize and account for this recovery factor. MIB and GSM values in off-flavor catfish and trout were measured using direct HS-SPME and distillation as sample preparation techniques. Trout samples prepared by distillation yielded 10-fold higher GSM recoveries than those from direct HS-SPME (31% versus 3%). A stable isotope dilution method (SIDM) was implemented by routinely spiking samples with known quantities of deuterium-labeled MIB and GSM, allowing for the correction of sample-to-sample recovery deviations. SIDM-determined GSM values generated recoveries of 106 and 95% for direct HS-SPME and distilled trout, respectively. Aspects of the strategies and techniques presented can be incorporated into existing analytical methods to improve the accuracy and sample throughput. Particularly, routine inclusion of SIDM in the evaluation of MIB and GSM can facilitate identification of reliable practices to control off-flavors in aquaculture.


Assuntos
Canfanos , Peixes-Gato , Naftóis , Animais , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas , Naftóis/química , Odorantes/análise
16.
Sci Rep ; 14(1): 7239, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538705

RESUMO

The study focused on the morphological and chemical characteristics of 200 Hymenocrater longiflorus Benth. genotypes found in natural habitats of eight regions in west of Iran. The primary objective of the study was to assess the morphological and phytochemical variability within populations grown in their natural habitats, with the aim of identifying their potential for domestication and utilization in pre-breeding programs. The plant height (PH) ranged from 50.32 to 69.65 cm, with the highest observed in population P8. The internode distances ranged from 4.7 to 6.47 cm, with the maximum distance found in P4. Flower lengths varied from 1.95 to 2.45 cm, with the minimum and maximum values observed in P4 and P3, respectively. The highest leaf length (5.20 cm) and width (3.87 cm) were recorded in P2. The aerial parts of the plant were utilized to extraction and determine the essential oil (EO) content and composition, which ranged from 0.40 to 0.78% (v/w). The analysis of EO by gas chromatography (GC) and gas chromatography mass spectrometry (GC/MS) identified 26 compounds, constituting 99-99.5% of the EOs. The main compounds in the EO and their percentage range (v/w DW) were tau-cadinol (0.62-55.56), mono (2-ethylhexyl) phthalate (8.10-94.70), elemol (0.21-19.11), ß-spathulenol (0.08-14.39), 4-terpineol (0.23-10.19), and ß-eudesmol (0.21-9.94). The main chemical groups found in EOs included oxygenated sesquiterpenes (1.12-68.43), and phthalates (9.73-94.72). Cluster analysis revealed three distinct chemotypes: chemotype I (populations 1 and 2) with major components of mono (2-ethylhexyl) phthalate, tau-cadinol, and α-elemol; chemotype II (population 5) rich in mono (2-ethylhexyl) phthalate; and chemotype III (populations 3, 4, 6-8) containing tau-cadinol, ß-eudesmol, and 4-terpineol. The study also evaluated total phenolic, total flavonoid, and DPPH free radical scavenging activity in the fifty percent inhibitory concentration (IC50) in leaf and flower samples of the genotypes, along with estimating total anthocyanin content in the flower samples. The total phenolic content (TPC) in leaf and flower samples ranged from 7.89 to 107.18 mg GAE/g DW and 39.98 to 86.62 mg gallic acid equivalent (GAE)/g DW, respectively. Total flavonoid content (TFC) ranged from 81.04 to 143.46 mg QUE/g DW in leaf samples and from 94.82 to 133.26 mg quercetin equivalent (QUE)/g DW in flower samples. DPPHsc IC50 (µg/mL) ranged from 0.65 to 78.74 in leaf samples and from 4.38 to 7.71 in flower samples. Anthocyanin content ranged from 1.89 to 3.75 mg cyanidin-3-glucoside equivalent (C3GE)/g DW among populations. Canonical correspondence analysis and simple correlation demonstrated a strong association and correlations among the studied attributes. The negative correlations between leaf DPPH (DPPH L) IC50 and TFC (- 0.73), TPC (- 0.63), Elemol (- 0.90), and EO (- 0.85) indicate that these compounds have a significant impact on the antioxidant activity of the leaves. Furthermore, Fruit DPPH (DPPH F) IC50 showed a negative correlation with TPC (- 0.79) and TFC (- 0.78), but a positive correlation with flower anthocyanins (0.51), (Z)-ß-Farnesene (0.66), and 4-Terpineol (0.57). Circular cluster analysis categorized the genotypes of all individuals in the eight studied populations into three main categories based on all the studied traits, indicating significant variation in phytochemical and morphological traits among populations, surpassing the within-populations variation.


Assuntos
Lamiaceae , Óleos Voláteis , Ácidos Ftálicos , Sesquiterpenos de Eudesmano , Sesquiterpenos , Humanos , Antioxidantes/farmacologia , Óleos Voláteis/farmacologia , Antocianinas , Irã (Geográfico) , Extratos Vegetais/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Melhoramento Vegetal , Fenóis/análise , Quercetina , Flavonoides/análise , Compostos Fitoquímicos
17.
Molecules ; 29(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542853

RESUMO

Zingiber purpureum Roscoe, known as plai in Thailand, is a perennial plant of the Zingiberaceae family and has traditionally been used in Southeast Asian countries to treat inflammation, pain, and asthma. In this study, we performed the characterization of the volatile constituents in ethyl acetate extracts of plai. Ethyl acetate extracts derived from the rhizomes of plai were subjected to gas chromatography-mass spectrometry, and the key peaks in the total ion current chromatograms were annotated or identified. In total, twenty-one compounds were identified using isolation procedures or standards, and nine compounds were annotated by comparing their Kovats retention index (RI) and electron ionization (EI) mass spectra with those in the literature. Most of the identifications were inconsistent with the tentative annotations found via library search and suggested that some peaks were incorrectly assigned in previous studies. Thus, to avoid further misannotations and contribute to the research on dereplication, the RI value, EI mass spectral data, and NMR spectroscopy data of the isolated compounds are reported.


Assuntos
Zingiberaceae , Cromatografia Gasosa-Espectrometria de Massas , Zingiberaceae/química , Acetatos , Extratos Vegetais/química , Tailândia
18.
Anal Chim Acta ; 1301: 342468, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38553125

RESUMO

BACKGROUND: Acetone, isoprene, and other volatile organic compounds (VOCs) in exhaled breath have been shown to be biomarkers for many medical conditions. Researchers use different techniques for VOC detection, including solid phase microextraction (SPME), to preconcentrate volatile analytes prior to instrumental analysis by gas chromatography-mass spectrometry (GC-MS). These techniques include a previously developed method to detect VOCs in breath directly using SPME, but it is uncommon for studies to quantify exhaled volatiles because it can be time consuming due to the need of many external/internal standards, and there is no standardized or widely accepted method. The objective of this study was to develop an accessible method to quantify acetone and isoprene in breath by SPME GC-MS. RESULTS: A system was developed to mimic human exhalation and expose VOCs to a SPME fiber in the gas phase at known concentrations. VOCs were bubbled/diluted with dry air at a fixed flow rate, duration, and volume that was comparable to a previously developed breath sampling method. Identification of acetone and isoprene through GC-MS was verified using standards and observing overlaps in chromatographic retention/mass spectral fragmentation. Calibration curves were developed for these two analytes, which showed a high degree of linear correlation. Acetone and isoprene displayed limits of detection/quantification equal to 12 ppb/37 ppb and 73 ppb/222 ppb respectively. Quantification results in healthy breath samples (n = 15) showed acetone concentrations spanned between 71 ppb and 294 ppb, and isoprene varied between 170 ppb and 990 ppb. Both concentration ranges for acetone and isoprene in this study overlap with those reported in existing literature. SIGNIFICANCE: Results indicate the development of a system to quantify acetone and isoprene in breath that can be adapted to diverse sampling methods and instrumental analyses beyond SPME GC-MS.


Assuntos
Butadienos , Hemiterpenos , Microextração em Fase Sólida , Compostos Orgânicos Voláteis , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Microextração em Fase Sólida/métodos , Acetona/análise , Expiração , Testes Respiratórios/métodos , Compostos Orgânicos Voláteis/análise
19.
Talanta ; 273: 125870, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460423

RESUMO

Pyroxasulfone is a selective, systemic, pre-emergence herbicide which acts to inhibit weeds in potato, coffee, sugar cane, eucalyptus, and soybean plantations, among others. This active ingredient was classified by Brazilian legislation as a very dangerous product for the environment, and to date there are no studies involving the development of extraction methods for monitoring this compound in environmental matrices. Therefore, the objective of this study was to optimize and validate liquid-liquid extraction with low temperature purification followed by a gas chromatography coupled to mass spectrometry analysis to determine this herbicide in honey samples. The results showed that the best extractor phase was acetonitrile and ethyl acetate (6.5 mL:1.5 mL), with recovery rates close to 100% and relative standard deviations below 11%. The validation proved that the extraction method was selective, precise, accurate and linear in the range of 3-225 µg kg-1, reaching a limit of quantification of 3 µg kg-1, with a -25.95% matrix effect. Monitoring on real samples did not reveal episodes of environmental contamination with pyroxasulfone residue.


Assuntos
Herbicidas , Mel , Isoxazóis , Sulfonas , Herbicidas/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Temperatura , Mel/análise , Extração Líquido-Líquido , Cromatografia Líquida de Alta Pressão , Extração em Fase Sólida
20.
Talanta ; 273: 125910, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38492284

RESUMO

Paw San rice, also known as "Myanmar pearl rice", is considered the highest quality rice in Myanmar. There are considerable differences in terms of the premium commercial value of Paw San rice, which is an incentive for fraud, e.g. adulteration with cheaper rice varieties or mislabelling its geographical origin. Shwe Bo District is one of the most popular rice growing areas in the Sagaing region of Myanmar which produces the most valued and highly priced Paw San rice (Shwe Bo Paw San). The verification of the geographical origin of Paw San rice is not readily undertaken in the rice supply chain because the existing analytical approaches are time-consuming and expensive. Therefore, there is a need for rapid, robust and cost-effective analytical techniques for monitoring the authenticity and geographical origin of Paw San rice. In this 4-year study, two rapid screening techniques, Fourier-transform near-infrared (FT-NIR) spectroscopy and headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS), coupled with chemometric modelling, were applied and compared for the regional differentiation of Paw San rice. In addition, low-level fusion of the FT-NIR and HS-GC-IMS data was performed and its effect on the discriminative power of the chemometric models was assessed. Extensive model validation, including the validation using independent samples from a different production year, was performed. Furthermore, the effect of the sample preparation technique (grinding versus no sample preparation) on the performance of the discriminative model, obtained with FT-NIR spectral data, was assessed. The study discusses the suitability of FT-NIR spectroscopy, HS-GC-IMS and the combination of both approaches for rapid determination of the geographical origin of Paw San rice. The results demonstrated the excellent potential of the FT-NIR spectroscopy as well as HS-GC-IMS for the differentiation of Paw San rice cultivated in two distinct geographical regions. The OPLS-DA model, built using FT-NIR data of rice from 3 production years, achieved 96.67% total correct classification rate of an independent dataset from the 4th production year. The DD-SIMCA model, built using FT-NIR data of ground rice, also demonstrated the highest performance: 94% sensitivity and 97% specificity. This study has demonstrated that FT-NIR spectroscopy can be used as an accessible, rapid and cost-effective screening tool to discriminate between Paw San rice cultivated in the Shwe Bo and Ayeyarwady regions of Myanmar.


Assuntos
Oryza , Espectroscopia de Luz Próxima ao Infravermelho , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Quimiometria , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Mobilidade Iônica/métodos , Mianmar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA